We often want the ability to add clouds to a large scale scene in order to see the reflective, transmissive and shadowing effects on the scene. In these cases we are not so much concerned with the absolute radiometry of the clouds (true multiple scattering, exact modeling of limb regions, etc..), as we are with capturing bulk effects (single-scattering contributions, transmission effects, realistic spatial distributions, etc..). With these cases in mind, and to support modeling of the next generation Landsat sensor, we are developing a simplistic and very fast large-scale cloud model based on using the USAF Cloud Scene Simulation Model ( CSSM ) and OPAC data to generate voxelized representations of inherent optical properties. DIRSIG uses this data to drive a simple radiative transfer model that captures the bulk of the radiometric effects on the scene with very little additional computation overhead. The process is currently going through a period of validation and refinement and sh...
A blog about the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model featuring posts contributed by the developers. This is not a user manual and it is not a training class. But, it is a place to see what the developers are doing and a little about how we do it. So think of this as a place to learn cool tips, tricks, etc.